

STANDARD OPERATING PROCEDURE

Title: nano-Liquid Chromatography for Experiment 1 and Experiment 2

SOP#: WU-SOP-LC2-01

Version #: 2 Authors: Petra Erdmann-Gilmore

Alan Davis

Reviewer: Sherri Davies, PhD

WU-PCC Director: R. Reid Townsend, MD, PhD

Date: 1/4/2017

Purpose

This document describes the configuration, benchmarks and gradient methods for nano-liquid chromatography (nano-LC) using an EASY nanoLC™ 1000 (https://tools.thermofisher.com/content/sfs/manuals/Man-60053-97227-EASY-nLC-1000-User-Man6005397227-C-EN.pdf) coupled to an Active Background Ion Reduction Device (ABIRD, ESI Source Solutions) that is interfaced to a triple quadrupole-Orbitrap (ThermoFisher, Q-Exactive™). The system is used to acquire scheduled full scan MS2 spectra (PRM) for the high-purity synthetic H/L peptide admixture given in WU-SOP-EXP1-02 (V2) in a complex matrix (tryptic digest of a pooled tumor lysate).

Scope

The procedures encompass the setup of a single column nano-LC for generating the MS data for Experiments 1 and 2 as, described in the CPTAC document, "Assay development guidelines". The configuration, optimization and benchmarking of the mass spectrometer are described in WU-SOP-MS3-01 and WU-SOP-MS4-01.

Responsibilities

It is the responsibility of person(s) performing this procedure to be familiar with laboratory safety procedures. The interpretation of results must be done by a person trained in the procedure and familiar with such interpretation.

Equipment

- EASY-nLC™ 1000 (Thermo Scientific, LC120).
- Active Background Ion Reduction Device-ABIRD (ESI Source Solutions, Woburn Ma)

Materials

- EASY-Spray Column: 75 μm x 50 cm PepMap™ RSLC C18, 2 μm, 100 Å (Thermo Scientific, ES803)
- Injection loop: 20 μL PEEKsil™, 100 μm (Thermo Scientific, LC472)

Reagents

- Mobile Phase A. Water containing 0.1% Formic Acid (Honeywell Burdick & Jackson, cat# LC452-2.5, 2.5L)
- Mobile Phase B. Acetonitrile containing 0.1% Formic Acid (Honeywell Burdick & Jackson, cat# LC441-2.5, 2.5 L).
- Pierce Retention Time Calibration Mixture, Thermo Scientific (88321)
- Pierce HeLa Protein Digest Standard, Thermo Scientific (88328)

Solutions

- Pour the vendor mixed solvents from the 2.5 L glass bottle to 250 mL glass media bottles.
- Fill the 25 mL reservoir on the LC pump from the 250 mL glass media bottles.
 - o Pump-A, mobile phase A: 0.1% FA in water
 - o Pump-B, mobile phase B: 0.1% FA in AcN
- Loading pump-S, mobile phase A: 0.1% FA in H₂O
- All solvents that go on the instrument are sonicated for 5 minutes to degas with the cap loosened. All reservoirs are rinsed 3 times before refilling with the appropriate mobile phase.

Procedure

- 1. Instrument Configuration
 - a. The flow path for the EASY-nLC system that is used to execute Experiments 1 and 2 is shown in Diagram I. The Thermo Scientific EASY-nLC system is configured in the configuration file in the Xcalibur® software. Methods for the autosampler and LC are written in each method file. For further details, see user manual. The method used to analyze samples (e.g. calibrants or standard peptide H/L admixtures) is controlled by event sequence and gradient as shown in the following Tables.

	Table I. Autosampler Method for PRM Sample Run:					
Step	Operation	Value	Parameter	Speed	Pressure	Description
	Sample		Injector			Pull up sample
1	Pickup	2.5 μL	Load	20 μL/min	71	into loop
7						Until column
/						pre-
				\		equilibration is
2	Wait					finished
			Injector			Loading sample
3	Sample Load	7 μL	Inject		800 bar	onto column
N.					/	Wait until
4	Wait				7	gradient starts
	Autosampler					
5	wash	100 μL		39		
6	END					

2. EASY-nLC method for PRM sample run:

a. Flow rate (nL/min): 300

b. Temperature (°C): 50

c. Run Conditions:

i. Column pre-equilibration to initial conditions

1. Exp 1: 6μL at 700bar.

2. Exp2: 20µL at 800bar

ii. Load sample for

1. Exp1: 7μL at 700bar

2. Exp2: 7µL at 800bar

iii. Prepare gradient

Table II. Timetable for Column Flow for PRM Sample Run Exp1				
	% Mobile phase A	% Mobile phase B		
Time (min)	composition	composition		
0	98	2		
5	98	2		
112	70	30		
113	5	95		
120	5	95		

Table II. Timetable for Column Flow for PRM Sample Run Exp2				
% Mobile phase A % Mobile phase Time (min) composition composition				
0	100	O		
15		0		
15	100	0		
182	68	32		
183	5	95		
190	5	95		

	Table III. Autosampler Method for System Performance Run					
					Press	
Step	Operation	Value	Parameter	Speed	ure	Description
	Sample			37		Pull up sample into
1	Pickup	2 μL	Injector Load	20μL/min		loop
		A				Until column pre-
						equilibration is
2	Wait					finished
					700	Loading sample onto
3	Sample Load	6 μL	Injector Inject		bar	column
			7			Wait until gradient
4	Wait					starts
	Autosampler					
5	wash	100 μL				
6	END					

- 3. EASY-nLC method for PRTC and HeLa digest runs:
 - a. Flow rate (nL/min): 300
 - b. Temperature (°C): 50
 - c. Run Conditions:
 - i. Column pre-equilibration to initial conditions at 700 bar.
 - ii. Load sample for 6μL at 700bar
 - iii. Prepare gradient

Table IV. Timetable for Column Flow for System Performance PRTC's				
% Mobile Phase % Mobile Phase Time (Min) A Composition B Composition				
0	98	2		
2	98	2		
32	70	30		
33	5	95		
36	5	95		

Page 4 of 7

Table V. Timetable for Column Flow for System Performance Hela Digest						
	% Mobile phase A	% Mobile phase B				
Time (min)	composition	composition				
0	98	2				
5	98	2				
105	80	20				
125	68	32				
126	5	95				
133	5	95				

4. Cycle Time for system performance test and PRM sample run

System Performance Run PRTC's		
Steps for PRM Run	Duration (Min)	
Re-equilibrate to initial conditions	15	
Sample Load on chip column	15	
gradient (2%B to 30%B)	30	
High AcN bump off (95%B)	5	
Total time (hours)	1.08	

System Performance Run Hela Digest		
Steps for System Performance Run	Duration (Min)	
Re-equilibrate to initial conditions	15	
Sample Load on chip column	15	
gradient (2%B to 30%B)	120	
High AcN bump off (95%B)	7	
Total time (hours)	2.62	

PRM Sample Run	Exp1 /
Steps for PRM Run	Duration (Min)
Re-equilibrate to initial conditions	15 /
Sample Load on chip column	15 /
gradient (2%B to 30%B)	112 /
High AcN bump off (95%B)	8/
Total time (hours)	2.5 /

PRM sample run	Exp2
Steps for PRM run	Duration (Min)
Re-equilibrate to initial conditions	57
Sample load on column	15
Gradient (isocratic initial	15
condition, 0%B)	
Gradient (0%B to 32%B)	167
High AcN bump off (95%B)	8
Total time (hours)	4.3

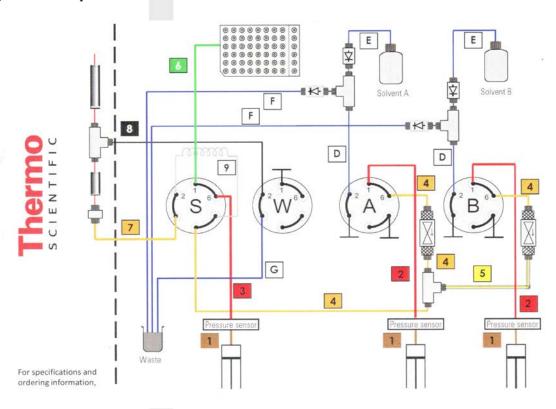


Diagram I: flow path

Thermo

ID	Connections	Tubing	Part number
1	Pump outlet to pressure sensor inlet	Stainless steel, 250 µm ID, 150 mm length	LC512
2	Pressure sensor outlet to valve A or B	Stainless steel, 250 µm ID, 150 mm length	LC513
3	Pressure sensor outlet to valve S	Stainless steel, 250 µm ID, 150 mm length	LC514
4	Mixing Tee to valve S, Valve A to flow sensor A, Valve B to flow sensor B, Flow sensor A to mixing Tee	nanoViper, 20 um ID, 350 mm length	LC522
5	Flow sensor B to mixing Tee	nanoViper, 10 um ID, 180 mm length	LC543
6	Autosampler needle connected to port 1 of valve S	PEEKsil", 150 um ID, 550 mm length	LC302
7	Column Out tubing connected to port 3 of valve S	nanoViper, 20 um ID. 550 mm length	LC560
8	Waste In line, venting Tee to port 2 of valve W	nanoViper, 75 um ID, 550 mm length	LC562
9	Sample loop, 20 μL	nanoViper, 250 um ID, 410 mm length	LC472
D	Port 2 of valve A to check valve A Port 2 of valve B to check valve B	Teflon", 500 um ID, 150 mm length	kit LC230
E	Tubing (2) from check valves to solvent bottles	Teflon, 500 um ID, 390 mm length	kit LC230
F	Tubing (2) from check valves to waste beaker	Teflon, 500 um ID, 390 mm length	kit LC230
G	Tubing from valve W to the waste beaker	Teflon, 500 um ID, 330 mm length	LC263

For a layout diagram, please

Referenced Documents

- WU-SOP-EXP1-02-: "Preparation of Standard Peptide Samples for the Generation of Reverse Response Curves-Experiment 1"
- WU-SOP-MS3-01- "Optimizing Mass Spectrometer Performance for Experiments 1 and 2 on the Q-Exactive™ system".
- WU-SOP-MS4-01 "Mass Spectrometry Using Parallel Reaction Monitoring for
- Experiments 1 and 2"

Abbreviations

- AcN, acetonitrile
- FA, formic acid
- LC-MS, nano-LC interfaced to a high-resolution Quadrupole-Orbitrap mass spectrometer as described in WU-SOP-LC2-01 and WU-SOP-MS4-01
- H or heavy, stable isotopically labeled synthetic peptide
- L or light, natural abundance synthetic peptide
- Q.S., quantum satis
- PDX, patient-derived xenografts
- PRM, parallel reaction monitoring
- PRTC- Pierce Retention Time Calibration Mixture

